INTERMEDIATE SPACES

Asuman G. AKSOY

DOĞA TU J. Math. Vol. 13 Num. 3 1989

INTERMEDIATE SPACES

Asuman G. AKSOY

Claremont McKenna College, Department of Mathematics, California 91711 - USA

Received 23/02/1989

Abstract

Considering Banach spaces X_1 and X_2 continuously imbedded in a linear Hausdorff space and the function norms K(t;f) and J(t;f) on $X_1 + X_2$ and $X_1 \cap X_2$ respectively, we define two discrete intermediate spaces $[X_1, X_2]_{\Theta,t}$ and $[X_1, X_2]_{\Theta,t}$. Some properties of these spaces as well as their interpolation property are established.

ARA UZAYLARI

Özet

Bu makalede doğrusal Hausdorff uzayı χ 'in içine sürekli gömme olan iki Banach uzayı X_1 ve X_2 gözönüne alınarak, X_1+X_2 uzayında K(t;f), $X_1\cap X_2$ uzayında J(t;f) işlevsel düzgeleri konularak, Θ 'nın bütün ve t'nin birden büyük değerleri için ayırtık ara uzayları $[X_1,X_2]_{\Theta,t}$ ve $[X_1,X_2]_{\Theta,t}$ tanımlanmıştır. Bu ara uzaylarının özellikleri ve içdeğer biçimleri incelenmiştir. Ayrıca nükleer gönderimlerin içdeğer biçimine ait bir teorem, belli bir ara uzayı için ispatlanmıştır.

In this paper we consider two Banach spaces X_1 ve X_2 , both continuously embedded in a linear Hausdorff space χ and the function norms K(t;f) and J(t;f) on $X_1 + X_2$ and $X_1 \cap X_2$ respectively and define discrete intermediate spaces

$$[X_1, X_2]_{\theta,t} = \{ f \in X_1 + X_2 : t^{-n\theta} K(t^n; f) \in \Lambda_{\infty}(\alpha) \}$$

and

$$[\![X_1, X_2]\!]_{\theta,t} = \{ f \in X_1 + X_2 : \exists (u_n)_0^\infty \in X_1 \cap X_2 \ni f = \sum_{n=0}^\infty u_n \}$$
in $X_1 + X_2$ and $t^{-n\theta} J(t^n; f) \in \Lambda_\infty(\alpha) \}$

where $-\infty < \theta < \infty$, t > 1 a real number $\alpha = (\alpha_n)$ is a stable nuclear exponent sequence and $\Lambda_{\infty}(\alpha)$ is the corresponding infinite type power series space.

Several properties of these intermediate spaces and their interpolation property are established. We also prove a theorem about an interpolation property of a nuclear map when the intermediate space is of a certain class.

Definitions 1. Let X_1 and X_2 be two Banach spaces contained in a linear Hausdorff space χ such that the identity mapping of X_i (i=1,2) into χ is continuous. X_1+X_2 is the algebraic sum of X_1 and X_2 defined as $X_1+X_2=\{f\in\chi: f=f_1+f_2 \mid f_i\in X_i \mid i=1,2\}$; the spaces X_1+X_2 and $X_1\cap X_2$ are Banach spaces under the norms

$$||f||_{X_1+X_2} = \inf_{f=f_1+f_2} (||f_1||_{X_1} + ||f_2||_{X_2})$$

and

$$||f||_{X_1 \cap X_2} = \max(||f||_{X_1}, ||f||_{X_2})$$

respectively. Furthermore, $X_1 \cap X_2 \subset X_i \subset X_1 + X_2 \subset \chi$, i = 1, 2 (see [1]). We call a Banach space $X \subset \chi$ satisfying

$$X_1 \cap X_2 \subset X \subset X_1 + X_2$$

an intermediate space of X_1 and X_2 . In the following, we shall discuss two general methods for generating intermediate spaces of X_1 and X_2 . First we recall the definitions of the function norms;

$$K(t;f) = \inf_{f = f_1 + f_2} (\|f_1\|_{X_1} + t\|f_2\|_{X_2}) \quad (0 < t < \infty) \text{ on } X_1 + X_2$$

and

$$J(t;f) = \max(\|f\|_{X_1}, t\|f\|_{X_2}) \ (0 < t < \infty) \ \text{on} \ X_1 \cap X_2.$$

In the sequel, we need the following inequalities.

Lemma 2: [1].

a) For each element $x \in X_1 + X_2$, K(t; f) is a continuous, monotone increasing, concave function on $(0, \infty)$ and

$$\min(1,t)\|f\|_{X_1+X_2}\leq K(t;f)\leq \max(1,t)\|f\|_{X_1+X_2}.$$

b) For each element $f \in X_1 \cap X_2$, J(t; f) is a continuous, monotone increasing, convex function on $(0, \infty)$ and

$$\min(1,t)\|f\|_{X_1\cap X_2}\leq J(t;f)\leq \max(1,t)\|f\|_{X_1\cap X_2}.$$

c) For each $f \in X_1 \cap X_2$,

$$K(t;f) \leq \min(1,\frac{t}{s})J(s;f) \quad (0 < t, s < \infty).$$

Study of K-Methods:

Given two Banach spaces X_1 and X_2 , we define

$$[X_1, X_2]_{\theta,t} = \{ f \in X_1 + X_2 : t^{-n\theta} K(t^n; f) \in \Lambda_{\infty}(\alpha) \}$$

where $-\infty < \theta < \infty$, t > 1 is an arbitrary fixed real number and $\alpha = (\alpha_n)$ is a stable nuclear exponent sequence (see [2]). For $f \in [X_1, X_2]_{\theta, t}$ the ℓ -th seminorm of f is given by:

$$||f||_{\theta,t,\ell}=\sum_{n=0}^{\infty} t^{-n\theta} K(t^n;f)e^{\ell\alpha_n}<\infty \quad \forall \ell=1,2,\ldots.$$

Notation: $A \rightarrow B$ means A is continuously injected in B.

Proposition 3:

- 1) For $n/\alpha_n \to \infty$ and $\theta > 0$, we have $X_1 \cap X_2 \to [X_1, X_2]_{\theta,t} \to X_1 + X_2$.
- 2) For $n/\alpha_n \to \infty$ and $\theta > 1$, we have $[X_1, X_2]_{\theta,t} \cong X_1 + X_2$.
- 3) a. For $n/\alpha_n \to \infty$ and $\theta > 0$, we have $X_1 \to [X_1, X_2]_{\theta,t}$.
 - b. For $n/\alpha_n \to \infty$ and $\theta > 1$, we have $X_2 \to [X_1, X_2]_{\theta,t}$.
- 4) If $\theta' < \theta$, then $[X_1, X_2]_{\theta', t} \to [X_1, X_2]_{\theta, t}$.
- 5) $[X_1, X_2]_{\theta,s} \cong [X_1, X_2]_{\theta,t}$.

Proof:

1) Let $f \in [X_1, X_2]_{\theta,t}$. Then $||f||_{\theta,t,\ell} < \infty \quad \forall \ell = 1, 2, \ldots$ using Lemma 2 a) we have

$$||f||_{X_1+X_2} \leq K(t^n;f)$$

since t > 1; then

$$\sum_{n=0}^{\infty} t^{-n\theta} e^{\ell \alpha_n} \| f \|_{X_1 + X_2} \le \| f \|_{\theta, t, \ell} < \infty$$

for each fixed ℓ . However the summation on the left is finite, or equivalently $t^{-n\theta} \in \Lambda_{\infty}(\alpha)$ since

$$t^{-n\theta} \in \Lambda_{\infty}(\alpha) \Leftrightarrow (t^{-n\theta})^{1/\alpha_n} \to 0 \Leftrightarrow -\frac{n}{\alpha_n} \theta \, \ln t \to -\infty \Leftrightarrow \frac{n}{\alpha_n} \to \infty.$$

Hence $[X_1, X_2]_{\theta,t} \to X_1 + X_2$.

Now let $f \in X_1 \cap X_2$. From Lemma 2 c) we know that for each $f \in X_1 \cap X_2$, $K(t; f) \leq \min(1, t/s)J(s; f)$, for $s, t \in (0, \infty)$. Setting s = 1 and observing $J(1, f) = ||f||_{X_1 \cap X_2}$ we obtain $K(t^n; f) \leq ||f||_{X_1 \cap X_2}$. Then

$$||f||_{\theta,t,\ell} \le ||f||_{X_1 \cap X_2} \sum_{n=0}^{\infty} t^{-n\theta} e^{\ell \alpha_n}.$$

The summation on the right is finite, as seen above, and we get $X_1 \cap X_2 \to [X_1, X_2]_{\theta,t}$.

2) From 1) we know that $[X_1, X_2]_{\theta,t} \to X_1 + X_2$ when $n/\alpha_n \to \infty$ and $\theta > 0$. To show the other inclusion we again use Lemma 2 b) we have

$$K(t^n; f) \le \max(1, t^n) ||f||_{X_1 + X_2} = t^n ||f||_{X_1 + X_2}$$

for t > 1 and

$$||f||_{\theta,t,\ell} \le \left[\sum_{n=0}^{\infty} t^{n(1-\theta)} e^{\ell \alpha_n}\right] ||f||_{X_1+X_2}.$$

As before, the summation on the right is finite by our assumptions on θ and α_n . Hence $X_1 + X_2 \to [X_1, X_2]_{\theta,t}$.

3) a. Let $f \in X_1$. Then $K(t; f) \le ||f||_{X_1}$ and we obtain

$$||f||_{\theta,t,\ell} \leq \left[\sum_{n=0}^{\infty} t^{-n\theta} e^{\ell \alpha_n}\right] ||f||_{X_1}.$$

Since $n/\alpha_n \to \infty$ and $\theta > 0$ the summation on the right in the above inequality is finite and hence $f \in [X_1, X_2]_{\theta,t}$.

b. Let $f \in X_2$. Then $K(t^n; f) \leq t^n ||f||_{X_2}$ and

$$||f||_{\theta,t,\ell} \leq \left[\sum_{n=0}^{\infty} t^{n(1-\theta)} e^{\ell \alpha_n}\right] ||f||_{X_2}.$$

Under the given conditions

$$\sum_{n=0}^{\infty} t^{n(1-\theta)} e^{\ell \alpha_n} < \infty$$

and hence $f \in [X_1, X_2]_{\theta,t}$.

4) Since for $0 < \theta' < \theta$ and t > 1

$$t^{-n\theta}K(t^n;f)e^{\ell\alpha_n}\leq t^{-n\theta'}K(t^n;f)e^{\ell\alpha_n},$$

the assertion is clear.

a. Let s > t > 1 and $f \in [X_1, X_2]_{\theta,s}$. Consider 5)

$$||f||_{\theta,t,\ell} = \sum_{n=0}^{\infty} t^{-n\theta} K(t^n; f) e^{\ell \alpha_n} = \sum_{m=0}^{\infty} \sum_{n: s^m \le t^n < s^{m+1}} t^{-n\theta} K(t^n, f) \cdot e^{\ell \alpha_n} (*)$$

We need the following observations:

- i) K(t; f) is increasing with t, therefore $K(t^n; f) \leq K(s^{m+1}; f)$.
- ii) $s^m \le t^n < s^{m+1}$ gives $m \frac{\log s}{\log t} \le n < (m+1) \frac{\log s}{\log t}$. Set $A = \lfloor \frac{\log s}{\log t} \rfloor + 1$ where [...] denotes the usual largest integer function. Since $\alpha = (\alpha_n)$ is increasing, we have $\alpha_n \leq \alpha_{(m+1)A}$. Going back to equation (*) above we get

$$||f||_{\theta,t,\ell} \leq \sum_{m=0}^{\infty} \sum_{n:s^{m} \leq t^{n} \leq s^{m+1}} s^{-m\theta} K(s^{m+1}; f) e^{\ell\alpha_{(m+1)A}}$$

$$\leq As^{\theta} \sum_{m=0}^{\infty} s^{-(m+1)\theta} K(s^{m+1}; f) e^{\ell\alpha_{(m+1)A}}$$

Since $\alpha = (\alpha_n)$ is a stable nuclear exponent sequence $\alpha_{AM}/\alpha_M \leq \delta$; therefore $||f||_{\theta,t,\ell} \leq As^{\theta} ||f||_{\theta,t,\ell\delta}$ and hence $[X_1,X_2]_{\theta,s} \to [X_1,X_2]_{\theta,t}$.

b. Let s > t > 1 and $f \in [X_1, X_2]_{\theta, t}$.

From ii) of 5) a., we have

$$1 \leq \sum_{n:s^m \leq t^n < s^{m+1}} 1 = \left[\frac{\log s}{\log t}\right] + 1.$$

Therefore

$$||f||_{\theta,s,\ell} = \sum_{m=0}^{\infty} s^{-m\theta} K(s^m; f) e^{\ell \alpha_m}$$

$$\leq \sum_{m=0}^{\infty} s^{-m\theta} K(s^m; f) e^{\ell \alpha_m} \cdot [\sum_{n:s \leq t^n < s^{m+1}} 1] \qquad (**)$$

We again observe the following:

i) K(t; f) is increasing with t, therefore $K(s^m; f) \leq K(t^n; f)$.

ii) $s^m \le t^n < s^{m+1}$ gives $m \le n \cdot \frac{\log t}{\log s} < m+1$. Let $B = \lfloor \frac{\log t}{\log s} \rfloor + 1$. $\alpha = (\alpha_n)$ is increasing therefore $\alpha_m \le \alpha_{nB}$. Going back to the equation (**), we have

$$||f||_{\theta,\delta,\ell} \leq \sum_{m=0}^{\infty} \sum_{n:\epsilon^m \leq t^n \leq \epsilon^{m+1}} s^{\theta} t^{-n\theta} K(t^n;f) e^{\ell \alpha_{nB}}$$

Again using the stability of $\alpha_n, \frac{\alpha_{nn}}{\alpha_n} \leq \delta'$; hence

$$||f||_{\theta,s,\ell} \le s^{\theta} \sum_{n=0}^{\infty} t^{-n\theta} K(t^n;f) e^{\ell \delta' \alpha_n} = s^{\theta} ||f||_{\theta,t,\ell \delta'}$$

and hence $[X_1, X_2]_{\theta,t} \to [X_1, X_2]_{\theta,s}$.

Notice that, if s > t > 1 from 5) a. and 5) b. we have $[X_1, X_2]_{\theta, t} \cong [X_1, X_2]_{\theta, s}$. Therefore from now on we shall write $[X_1, X_2]_{\theta}$ for the space $[X_1, X_2]_{\theta, t}$.

Definition 4. An interpolation pair (X_1, X_2) is a pair of Banach spaces X_1, X_2 continuously contained in a linear Hausdorff space χ . Let $L(\chi, \mathbf{Y})$ be the space of all linear transformations from $X_1 + X_2$ to $Y_1 + Y_2$ (where \mathbf{Y}, Y_1, Y_2 have a similar connotation) such that:

- i) For $T \in L(\chi, \mathbf{Y})$, $f_i \in X_i \Rightarrow T f_i \in Y_i$.
- ii) $||Tf_i||_{Y_i} \leq M_i ||f_i||_{X_i}$ i = 1, 2.

(i.e., the restriction of T to X_i is a bounded linear transformation from X_i to Y_i). Let X, Y be two intermediate spaces of X_1 and X_2 and of Y_1 and Y_2 , respectively. We say X and Y have the *interpolation property* if for each $T \in L(\chi, Y)$ the restriction of T to X is a bounded linear transformation of X into Y.

We know by Proposition 3 that $[X_1, X_2]_{\theta}$ is an intermediate space when $0 < \theta < 1$ and $n/\alpha_n \to \infty$. The last condition is satisfied for example in case $\alpha_n = \sqrt{n}$ or $\alpha_n = \log n$. If $\alpha_n = \sqrt{n}$ then $\Lambda_{\infty}(\alpha)$ is isomorphic to the space of entire functions in two complex variables.

Theorem 5. Let (X_1, X_2) and (Y_1, Y_2) be two interpolation pairs of χ and Y respectively. Then the intermediate spaces $[X_1, X_2]_{\theta}$ and $[Y_1, Y_2]_{\theta}$ have the interpolation property.

Proof: Let $T \in L(\chi, Y)$ satisfy the conditions in Definition 4. Now consider

$$K(t^n; Tf) = \inf_{Tf = g_1 + g_2} (\|g_1\|_{Y_1} + t^n \|g_2\|_{Y_2})$$

$$\leq \inf_{f=f_1+f_2} (\|Tf_1\|_{Y_1} + t^n \|Tf_2\|_{Y_2})$$

$$\leq \max(M_1, M_2) \inf_{f=f_1+f_2} (\|f_1\|_{X_1} + t^n \|f_2\|_{X_2})$$

and hence

$$K(t^n; Tf) \leq \max(M_1, M_2) K(t^n; f)$$

and

$$||Tf||_{\theta,t,\ell} \leq \max(M_1,M_2)||f||_{\theta,t,\ell}.$$

Thus we see the restriction of T to $[X_1, X_2]_{\theta}$ into $[Y_1, Y_2]_{\theta}$.

We now give a theorem about an interpolation property of a nuclear map when the intermediate space is of a certain class. Given $0 < \theta < 1$, we say an intermediate space X of X_1 and X_2 is of class $K(\theta, X_1, X_2)$ if for each $f \in X$ and for each given t > 0, there exist $f_1 \in X_1$ and $f_2 \in X_2$ with $f = f_1 + f_2$ and $||f_1||_{X_1} \le ct^{\theta} ||f||_{X_1}$, $||f_2||_{X_2} \le ct^{\theta} ||f||_{X_1}$. The properties of intermediate spaces of class $K(\theta, X_1, X_2)$ and their relation to the study of K-methods are investigated in the classical work of J.L. Lions and J. Peetre [3].

Theorem 6. Let B be a Banach space, (X_1, X_2) be an interpolation pair and X be of class $K(\theta, X_1, X_2)$. Suppose $T: X_1 \to B$ is $\Lambda_{\infty}(\alpha)$ -nuclear, $T: X_2 \to B$ is $\Lambda_{\infty}(\beta)$ -nuclear, where α_n and β_n are stable, nuclear exponent sequences. Then $T: X \to B$ is $\Lambda_{\infty}(\gamma)$ -nuclear, where $\gamma_n = (1 - \theta)\alpha_n + \theta\beta_n$.

Proof: Let U be the unit ball of X and $\delta_n(T(U))$ be the n-th Kolmogorov diameter of T (see [4]). Given n, choose $t = \delta_n(T(U_2))/\delta_n(T(U_1))$. Let $u \in U$. Since X is of class $K(\theta, X_1, X_2)$, $\exists u_1 \in X_1$, $u_2 \in X_2$ such that $u = u_1 + u_2$ with $||u_1||_{X_1} \le ct^{\theta}||u||_X$ and $||u_2||_{X_2} \le ct^{\theta-1}||u||_X$. Let U_i be the unit ball of X_i . Then

$$T(U) \subset ct^{\theta}T(U_1) + ct^{\theta-1}T(U_2)$$

and consequently

$$\delta_{2n}(T(U)) \leq ct^{\theta}\delta_n(T(U_1)) + ct^{\theta-1}\delta_n(T(U_2)).$$

Then we have:

$$\delta_{2n}(T(U)) \le C' \{\delta_n(T(U_1))\}^{1-\theta} \{\delta_n(T(U_2))\}^{\theta}$$
 (*)

Now $T: X_1 \to B$ is a $\Lambda_{\infty}(\alpha)$ -nuclear, therefore $\{\delta_n(T(U_1))\}^{1/\alpha_n} \to 0$. So given $\epsilon > 0$, we can find an N_1 such that $\{\delta_n(T(U_1))\}^{1/\alpha_n} < \epsilon$ for $\forall n \geq N_1$ and an N_2 such that $\{\delta_n(T(U_2))\}^{1/\beta_n} < \epsilon$ for $\forall n \geq N_2$. Let $N = \min(N_1, N_2)$; then for $n \geq N$ we have from (*) observed that

$$\delta_{2n}(T(U)) < C' \epsilon^{(1-\theta)\alpha_n+\theta\beta_n}.$$

Let $\gamma_n = (1 - \theta)\alpha_n + \theta\beta_n$. Since α_n and β_n are both stable, we have γ_n is also stable. Now

$$\sum_{n=0}^{\infty} \delta_{2n}(T(U))e^{k\gamma_{2n}} \leq \sum_{n=0}^{\infty} \delta_{2n}(T)e^{M\gamma_n} < \infty;$$

the proof is completed using the stability of (γ_n) .

Corollary 7. Let B be a Banach space, (X_1, X_2) be an interpolation pair and X be of class $K(\theta, X_1, X_2)$. If $T: X_1 \to B$ is $\Lambda_{\infty}(\alpha)$ -nuclear, where $(\alpha_n) = \alpha$ is a stable nuclear exponent sequence and $T: X_2 \to B$ is continuous, then $T: X \to B$ is $\Lambda_{\infty}(\alpha)$ -nuclear.

Proof: Recall the inequality (*) obtained in the proof of the previous theorem viz.,

$$\delta_{2n}(T(U)) \leq C' \{\delta_n(T(U_1))\}^{1-\theta} \{\delta_n(T(U_2))\}^{\theta}$$

 $T: X_2 \to B$ is continuous, therefore $\delta_n(T(U_2)) \leq M$. $T: X_1 \to B$ is $\Lambda_{\infty}(\alpha)$ -nuclear; therefore we can find an N such that $\delta_n(T(U_1)) < \epsilon^{\alpha_n} \quad \forall n > N$ or $\{\delta_n(T(U_1))\}^{1-\theta} \leq \epsilon^{(1-\theta)\alpha_n}$. Using the above equation again and the fact that $(\alpha_n) = \alpha$ is stable, we have

$$\sum_{n=0}^{\infty} \delta_{2n}(T)e^{k\alpha_{2n}} \leq \sum_{n=0}^{\infty} \delta_{2n}(T)e^{k(1-\theta)\alpha_{2n}}$$
$$\leq \sum_{n=0}^{\infty} \delta_{2n}(T)e^{k'\alpha_{n}} < \infty.$$

Study of J-Methods

Given two Banach spaces X_1 and X_2 we define

$$[\![X_1,X_2]\!]_{\theta,t}=\{f\in X_1+X_2:\exists (u_n)_0^\infty\in X_1\cap X_2 \text{ such that } f=\sum_{n=0}^\infty u_n\}$$

in $X_1 + X_2$ and $t^{-n\theta}J(t^n; u_n) \in \Lambda_{\infty}(\alpha)$ where $-\infty < \theta < \infty$, $\alpha = (\alpha_n)$ is a stable nuclear exponent sequence, t > 1 is a fixed real number. Let $f \in [X_1, X_2]_{\theta, t}$. Then

$$||f||_{\theta,t,\ell} = \inf_{f=\sum u_n} \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n) e^{\ell \alpha_n} \text{ for } \ell = 1, 2, \dots$$

Proposition 8.

1) If either $\theta \leq 1$ or n/α_n is bounded $(\theta > 1)$, then

$$X_1 \cap X_2 \to [X_1, X_2]_{\theta,t} \to X_1 + X_2.$$

2) a. If either $\theta \leq 0$ or n/α_n is bounded $(\theta > 0)$, then

$$[\![X_1,X_2]\!]_{\theta,t}\cong X_1\cap X_2.$$

b. $X_1 \cap X_2$ is a dense subspace of $[X_1, X_2]_{\theta,t}$.

- 3) If $\theta' < \theta$, then $[X_1, X_2]_{\theta', t} \to [X_1, X_2]_{\theta, t}$.
- 4) a. If either $\theta < 0$ or n/α_n is bounded, $[X_1, X_2]_{\theta,t} \to X_1$.
 - b. If either $\theta \leq 1$ or n/α_n is bounded, $[X_1, X_2]_{\theta,t} \to X_2$.

Proof:

1) Let $f \in X_1 \cap X_2$ and let $\delta_{n,k}$ be the Kronecker symbol. Set $u_n = f \cdot \delta_{o,n}$. Then since only $u_0 \neq 0$, $f = \sum_{n=0}^{\infty} u_n$ holds; moreover $J(1; u_0) = J(1; f)$.

$$||f||_{\theta,t,\ell} \le \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n) e^{\ell \alpha_n} = ||f||_{X_1 \cap X_2}$$

and hence $X_1 \cap X_2 \to [X_1, X_2]_{\theta,t}$. Letting $f \in [X_1, X_2]_{\theta,t}$ then $\exists (u_n)_0^\infty \in X_1 \cap X_2$ such that $f = \sum_{n=0}^\infty u_n$ in the $X_1 + X_2$ -norm and $||f||_{\theta,t,\ell} < \infty$ for $\ell = 1, 2, \ldots$ Since $f = \sum_{n=0}^\infty u_n$ in the $X_1 + X_2$ norm,

$$||f||_{X_1+X_2} \le \sum_{n=0}^{\infty} ||u_n||_{X_1+X_2} \text{ and } ||u_n||_{X_1+X_2} = K(1; u_n).$$

Using Lemma 2 part c) we obtain $K(1;u_n) \leq \min(1,t^{-n})J(t^n;u_n);\ t>1$ now gives

$$||u_n||_{X_1+X_2} \leq t^{-n}J(t^n;u_n),$$

$$||f||_{X_1+X_2} \leq \sum_{n=0}^{\infty} t^{-n} J(t^n; u_n) \leq \sum_{n=0}^{\infty} t^{n(\theta-1)} t^{-n\theta} J(t^n; u_n) e^{\ell \alpha_n}.$$

Now if $\theta - 1 \le 0$ $(\theta \le 1)$, then

$$||f||_{X_1+X_2} \le \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n)^{\ell \alpha_n}$$

giving $[X_1, X_2]_{\theta,t} \to X_1 + X_2$. Or if n/α_n is bounded and $\theta > 1$, then $t^{n(\theta-1)} \le e^{k\alpha_n}$.

$$||f||_{X_1+X_2} \le \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n) e^{(k+\ell)\alpha_n} \text{ implies } [X_1, X_2]_{\theta,t} \to X_1 + X_2.$$

2) a. By part 1) we always have $X_1 \cap X_2 \to [\![X_1, X_2]\!]_{\theta,t}$. To show the other inclusion, take $f \in [\![X_1, X_2]\!]_{\theta,t}$ and then $f = \sum_{n=0}^{\infty} u_n$ and hence

$$||f||_{X_1+X_2} \leq \sum_{n=0}^{\infty} ||u_n||_{X_1+X_2} = \sum_{n=0}^{\infty} J(1;u_n).$$

Since J(t; f) increasing in t and t > 1, $J(1; u_n) \leq J(t^n; u_n)$ and

$$||f||_{X_1 \cap X_2} \le \sum_{n=0}^{\infty} J(t^n; u_n).$$

Now if $\theta \leq 0$ we have $t^{n\theta} \leq 1$ and so

$$||f||_{X_1\cap X_2}\leq \sum_{n=0}^{\infty}t^{-n\theta}J(t^n;u_n)e^{\ell\alpha_n},$$

or if $\theta > 0$ and n/α_n is bounded $(n \le M\alpha_n)$, letting $\theta \ln t = S > 0$, we have $t^{n\theta} = e^{nS} \le e^{MS\alpha_n}$ and so

$$||f||_{X_1\cap X_2}\leq \sum_{n=0}^{\infty}t^{-n\theta}J(t^n;u_n)e^{(MS+\ell)\alpha_n}.$$

In both cases $[X_1, X_2]_{\theta,t} \to X_1 \cap X_2$.

b. To show $X_1 \cap X_2$ is dense in $[X_1, X_2]_{\theta,t}$, take $f \in [X_1, X_2]_{\theta,t}$; then $\exists (u_n)_0^\infty \in X_1 \cap X_2$ such that $f = \sum_{n=0}^\infty u_n$ and $||f||_{\theta,t,\ell} < \infty \ \forall \ell$. Define $f_N = \sum_{n=0}^N u_n$ then $f_N \in X_1 \cap X_2$ and

$$f-f_N=\sum_{N+1}^\infty u_n.$$

So given $\epsilon, \ell \, \exists N_\ell = N \ni \|f - f_N\|_{\theta,t,\ell} \le \sum_{N+1}^\infty t^{-n\theta} J(t^n; u_n) e^{\ell \alpha_n} < \epsilon$.

3) Consider $t^{-n\theta}J(t^n;u_n)e^{\ell\alpha_n}=t^{n(\theta'-\theta)}t^{-n\theta'}J(t^n;u_n)e^{\ell\alpha_n}$; but $\theta'<\theta$ and hence $t^{n(\theta'-\theta)}<1$.

4) a. Let $f \in [X_1, X_2]_{\theta,t}$ then $||f||_{X_1} \le \sum_{n=0}^{\infty} ||u_n||_{X_1}$. On the other hand, $J(t^n, f) = \max(||f||_{X_1}, t^n ||f||_{X_2})$ gives $||f||_{X_1} \le J(t^n; f)$; hence

$$||f||_{X_1} \leq \sum_{n=0}^{\infty} J(t^n; u_n) = \sum_{n=0}^{\infty} t^{-n\theta} t^{n\theta} J(t^n; u_n) e^{\ell \alpha_n}.$$

If $\theta < 0$, $t^{n\theta} \le 1$ then

$$||f||_{X_1} \leq \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n) e^{\ell \alpha_n}.$$

Or if $\theta > 0$ but n/α_n is bounded, we can write $t^{n\theta} = e^{n\theta} \ln t$. For $\theta/nt = S > 0$ and $n/\alpha_n \le M$.

$$||f||_{X_1} \leq \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n) e^{(MS+\ell)\alpha_n}.$$

Hence if either $\theta < 0$ or $n/\alpha_n \leq M$, then $[X_1, X_2]_{\theta,t} \to X_1$.

b. We know $t^n || f ||_{X_2} \le J(t^n; f)$. In particular $t^n || u_n ||_{X_2} \le J(t^n; u_n)$. Let $f \in [X_1, X_2]_{\theta, t}$ then $f = \sum_{n=0}^{\infty} u_n$ and

$$||f||_{X_{2}} \leq \sum_{n=0}^{\infty} ||u_{n}||_{X_{2}} \leq \sum_{n=0}^{\infty} t^{-n} J(t^{n}, u_{n})$$

$$\leq \sum_{n=0}^{\infty} t^{n(\theta-1)} t^{-n\theta} J(t^{n}; u_{n}) e^{\ell \alpha_{n}}.$$

Now if $\theta-1<0$ then $t^{n(\theta-1)}\leq 1$. Or if $\theta-1>0$ and n/α_n is bounded then $t^{n(\theta-1)}\leq e^{MS\alpha_n}$ where $S=(\theta-1)\cdot \ell n$ $t\geq 0$ and $n/\alpha_n\leq M$. Hence

$$||f||_{X_2} \leq \sum_{n=0}^{\infty} t^{-n\theta} J(t^n; u_n) e^{(MS+\ell)\alpha_n}$$

gives $[X_1, X_2]_{\theta,t} \to X_2$.

Theorem 9. Let (X_1, X_2) and (Y_1, Y_2) be two interpolation pairs of χ and Y respectively. The intermediate spaces $[\![X_1, X_2]\!]_{\theta,t}$ and $[\![Y_1, Y_2]\!]_{\theta,t}$ have the interpolation property.

Proof:

$$J(t;Tf) = \max(\|Tf\|_{X_1}, t\|Tf\|_{X_2}) \leq \max(M_1, M_2)(\|f\|_{X_1}, t\|f\|_{X_2})$$

$$\leq \max(M_1, M_2)J(t; f)$$

$$T(1;Tf) = \|Tf\|_{Y_1 \cap Y_2} \leq \max(M_1, M_2)\|f\|_{X_1 \cap X_2}$$

therefore T is a continuous linear map form $X_1 \cap X_2$ into $Y_1 \cap Y_2$. From the proof of Theorem 5 we have $K(t,Tf) \leq \max(M_1,M_2)K(t;f)$. Letting t=1 we get $||Tf||_{Y_1+Y_2} \leq \max(M_1,M_2)||f||_{X_1+X_2}$, (i.e. T is continuous linear map form X_1+X_2 into Y_1+Y_2). For $f \in [X_1,X_2]_{\theta,t}$ we have $(u_n) \in X_1 \cap X_2 \ni$

$$f = \sum_{n=0}^{\infty} u_n$$

in X_1+X_2 -norm; so we also have $Tf=\sum_{n=0}^{\infty}Tu_n$ in Y_1+Y_2 norm where $\{Tu_n\}\in Y_1\cap Y_2$. Finally $J(t;Tu_n)\leq \max(M_1,M_2)J(t;u_n)$ completes the proof.

- [1] Butzer, P.L. and H. Berens: Semigroup of Operators and Approximation, Springer, Berlin-Heidelberg-New York, 1967.
- [2] Dubinsky, E., and M.S. Ramanujan: On λ-nuclearity, Mem. Amer. Math. Soc., 128, (1972).
- [3] Lions, J.L., ad J. Peetre: Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes Sci. Publ. Math., 19, (1964), 5-68.