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Abstract

Considering Banach spaces X; and X, continuously imbedded in a linear
Hausdorff space and the function norms K(¢; f) and J(¢; f) on X, + X, and
X, N X, respectively, we define two discrete intermediate spaces [ X1, X2]e,¢
and [ X, X2]e,:. Some properties of these spaces as well as their interpolation
property are established.

ARA UZAYLARI
Ozet

Bu makalede dogrusal Hausdorff uzay: x’in icine siirekli gdmme olan iki
Banach uzay1 X; ve X, gozoniine alimarak, X + X, uzaymda K(¢; f), X,NX>
uzayinda J(t; f) iglevsel diizgeleri konularak, ©’mn biitiin ve t’nin bir-
den biiyiik degerleri igin aywtik ara uzaylan (X, Xz]e,: ve [X1,Xz]e.:
tanimlanmigtir.  Bu ara uzaylarimin ozellikleri ve igdeger bigimleri ince-
lenmigtir. Ayrica niikleer génderimlerin i¢deger bigimine ait bir teorem, belli
bir ara ugzay: igin ispatlanmgtir.

In this paper we consider two Banach spaces X; ve X3, both continuously embedded
in a linear Hausdorff space x and the function norms K (t; f) and J{t; f) on X, + X and
X1 N X, respectively and define discrete intermediate spaces

(X1, Xelos ={f€X1+ X2: tT"K(t"; f) € Aoo(e)}
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and
(X, Xolog ={fEX1+ Xo: Hup)P €EXaNX2D f=) up

n=0
in X+ X, and t7J(t%; f) € Ao (@)}

where —0o < § < 0o, t > 1 a real number a = (a,) is a stable nuclear exponent sequence
and Ao (a) is the corresponding infinite type power series space.

Several properties of these intermediate spaces and their interpolation property are
established. We also prove a theorem about an interpolation property of a nuclear map
when the intermediate space is of a certain class.

Definitions 1. Let X; and X; be two Banach spaces contained in a linear Hausdorff
space x such that the identity mapping of X; (i = 1,2) into x is continuous. X; + X is the
algebraic sum of X; and Xz defined as X1 +Xo ={f€x: f=fi+f: fi€ X; i=1,2}
the spaces X; + X2 and X; N X, are Banach spaces under the norms

I7lxiexs = _inf (Ifalles + 1 fal)

and

I fllxanx, = max(liflix., [7]x,)

respectively. Purthermore, X; N X, C X; C X1+ X2 C x, = 1,2 (see [1]).
We call a Banach space X C x satisfying

XinXacXcXi+Xe

an intermediate space of X; and X5. In the following, we shall discuss two general methods
for generating intermediate spaces of X; and X,. First we recall the definitions of the
function norms;

K@) =, inf (Il +tlfalx) (0<t<o) on Xit X,

and

J(t; f) = max(|| fllx,, el fllxs) (0 <t <o) on XN X,

In the sequel, we need the following inequalities.

Lemma 2: [1].

a) For each element z € X;+X,, K(¢; f) is a continuous, monotone increasing, concave
function on (0, c0) and

min(L, £)[|fllx,+x, < K(t; f) < max(1, )| £l x,+x,-
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b) For each element f € X; N X3, J(¢t; f) is a continuous, monotone increasing, convex
function on (0, c0) and

min(1, t)||fllx,nx, < J(t f) < max(L,¢)[|f]|lx.nx;-

c) For each f € X; N X,,

K(tf) < min(l,é)](s; ) (0<ts <o)

Study of K-Methods:
Given two Banach spaces X; and X5, we define

[X]_,Xg]o.g = {f (S X1 + X2 : t—nﬂ K(tn;f) (S Aoo(a)}

where —oo < § < 00, t > 1 is an arbitrary fixed real number and a = (an) is a stable
nuclear exponent sequence (see [2]). For f € [X), X2]o,: the £-th seminorm of f is given
by:

Iflloe=_ t7™ K(t*; f)e** <00 VE=1,2,....

n=0
Notation: A — B means A is continuously injected in B.
Proposition 3:
1) For n/a, — oo and § > 0, we have X; N X; — [X;, X2]p,s — X1 + Xo.
2) For n/a, — oo and 6 > 1, we have [X), X2]p: = X + Xo.

3) a. For n/a, — co and § > 0, we have X; — [X}, Xz]p,.
b. For n/a, — oo and 6 > 1, we have X — [Xi, X3)o,:.

4) If 8" < 6, then [Xi, Xo]y , — [X1, Xo]o,e.
5) [X1, X2]o,s = [X1, Xo]o,e.

Proof:
1) Let f € {X1,X2]o,t. Then ||flloe,e < oo V&=1,2,... using Lemma 2 a) we have

llfllxl+X2 < K(t"’;f)
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since ¢ > 1; then

o0
Z t7n0 efan "f"X1+Xz < "f"o.t.t < oo
n=0
for each fixed £. However the summation on the left is finite, or equivalently t~"% €
Aoo (@) since
—no -n6\1/ay, n n
t™" ede(a) & (t7) — 0% ——0flnt— —co & — — o0.
Qn Cn

Hence (X1, X2]o,: — X1 + Xa.

Now let f € X; N X,. From Lemma 2 ¢) we know that for each f € X; N X,
K(t; f) < min(1,¢/s)J(s; f), for s, € (0, 00). Setting s = 1 and observing J(1, f) =
| fllx,nx, we obtain K(t"; f) < ||fllx,nx,. Then

o0
I lote < IFllxsnxs Dt~ 0etm,

n=0
The summation on the right is finite, as seen above, and we get X; N X, —
[X1, X2,

2) From 1) we know that [ X3, X3]o,. — X1 + X2 when n/a, — oo and § > 0. To show
the other inclusion we again use Lemma 2 b) we have

K(tn; f) < max(l,t")||f||x,+x, = t""f"X1+X1

for t > 1 and

I llo.e,e < [Z tn(l_o)e&'“l x4+

n=0
As before, the summation on the right is finite by our assumptions on 4 and a,.
Hence X, + Xz — [ X1, X2]o ¢

8) a. Let f € X;. Then K(t; f) < ||f||x, and we obtain

o0
I llo,e.e < [Z t_"oem“] 11l -

n=0

Since n/a, — oo and ¢ > 0 the summation on the right in the above inequality
is finite and hence f € [X1, X2)o:.

b. Let f € X,. Then K(t*; f) < t*||f|lx, and

o0

£ llo.e < [Z t”"'”’e“"‘] I £llxs-

n=0
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Under the given conditions

(o]

z tn(l-ﬂ)eean < 0o

n=0

and hence f € [ X, X2]p,s-
4) Sincefor0< 8 <fandt>1
t—nﬂK(tn; f)eta,. S t—nO' K(tn; f)e‘“",
the assertion is clear.
5) a. Let s>t > 1and f €[X),X>3)s,. Consider
o0 (e -]
Iflose=D e K™ flet*= 5" 3 7 K(e", f)-etn (%)
n=0 m=0 p:am<ingsmtl
We need the following observations:

i) K(¢; f) is increasing with ¢, therefore K(t*; f) < K(s™*1; f).

ii) s™ <t < s™*+! gives mi—gg—: <n<(m+ 1):—25—:. Set A= [ll—‘;g—:] + 1 where
[-..] denotes the usual largest integer function. Since & = (ay) is increasing,

we have ap < @(m+1)4- Going back to equation (*) above we get

0
O

I floee <
m=0 piamLin<amtl
oo
< As® Z 8—(m+1)0K(8m+1;f)eéa(m.,.,)A
m=0

Since @ = (a,) is a stable nuclear exponent sequence aaa/ar < §; therefore
[ £llo,e.¢ < As®||fllo,t.es and hence [X1, Xzlo,s — [X1, Xa]o,s-

b. Let s>¢t>1and f€ [.Xl,X2]9't.
From ii) of 5) a., we have

1< Y 1=,

niaMmLEnLamtl logt
Therefore
o]
1llowe = D s™™0K(s™; f)etom
m=0
(=]
< D eTMK(™ et [ Y (++)
m=0 nia<tn<amtl

DOGA TU J. Math. 13, 3, 1989 83



Intermediate Spaces

84

We again observe the following:

i) K(t; f) is increasing with ¢, therefore K(s™; f) < K(t"; f).

ii) s™ <t < s™*! gives m < n-ll—gg—: <m+1. Let B= [ll—gg—:]+1. a=(a,)
is increasing therefore a,, < a,p. Going back to the equation (**), we
have

[~}
llfllo.a.e < Z Z gi—no K(t"; f)eeomn

m=0 p:amin<amti

Again using the stability of a,, 28 < §'; hence

oo
IFlose < s° ) t7° K (2% f)e® = (| fllo,e,es'

n=0

and hence [X1, X2|o,c — [X1, X2]o,s.
Notice that, if s > ¢ > 1 from 5) a. and 5) b. we have [ X}, X5]p: = [X1, X2]o,s-
Therefore from now on we shall write [X;, X2]o for the space [X1, Xa]o,s.

Definition 4. An interpolation pair (X;, X2) is a pair of Banach spaces X, X»
continuously contained in a linear Hausdorff space x. Let L(x, Y) be the space
of all linear transformations from X; + Xz to Y; + Y2 (where Y, Y;,Y2 have a
similar connotation) such that:

i) For T € L(X,Y), LeX;=ThHeY,.

i) |Tfilly: < Millfillx, ©=1,2.
(i.e., the restriction of T' to X; is a bounded linear transformation from X;
to ¥;). Let X,Y be two intermediate spaces of X; and X; and of Y, and
Ya, respectively. We say X and Y have the interpolation property if for each
T € L(x,Y) the restriction of T to X is a bounded linear transformation of X
into Y.
We know by Proposition 3 that [X;, X2]s is an intermediate space when 0 <
# < 1 and n/a, — co. The last condition is satisfied for example in case
ap =+/nor a, =logn. If a, = v/n then A, (a) is isomorphic to the space of
entire functions in two complex variables.

Theorem 5. Let (X;,X2) and (Y;,Y2) be two interpolation pairs of x and
Y respectively. Then the intermediate spaces [X3, Xz]p and [Y7, Y2|o have the
interpolation property.

Proof: Let T € L(x,Y) satisfy the conditions in Definition 4. Now consider

K@ Tf) = inf + "
(t*;Tf) T,;gﬁgz(llgllln llg2lv.)
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< T Al + 1T fallva)

< max(My, M) _in (Ifsllx, + 1 allx,)
and hence

K(t*; Tf) < max(My, M2) K (t; f)
and

(7 fllo.,e < max(My, M2)| fllo,¢e.
Thus we see the restriction of T' to [X;, X2|s into |3, Y2]o.

We now give a theorem about an interpolation property of a nuclear map
when the intermediate space is of a certain class. Given 0 < f§ < 1, we say an
intermediate space X of X; and X, is of class K(f, X1, X2) if for each f € X
and for each given t > 0, there exist f; e X1 and fo€ Xo with f=f1 + f2
and ||fillx, < elifllx, Nfallx, < cton flix. The properties of intermediate
spaces of class K(f, X1, X>) and their relation to the study of K-methods are
investigated in the classical work of J.L. Lions and J. Peetre [3].

Theorem 6. Let B be a Banach space, (X;, X2) be an interpolation pair
and X be of class K(0,X,,X;). Suppose T : X; — B is Ay (a)-nuclear,
T : X — B is A (B)-nuclear, where a, and B, are stable, nuclear exponent
sequences. Then T : X — B is Ay (7)-nuclear, where v, = (1 — 8)a, + 68,.

Proof: Let U be the unit ball of X and 6,(T(U)) be the n-th Kolmogorov
diameter of T (see [4]). Given n, choose t = 6,(T(U2))/6n(T(U1)). Let ue U.
Since X is of class K (6, X1, X2), Ju; € X;, uz € X, such that u = u; + up
with |Jui]lx, < ct®||ullx and |Juz|x, < ct®"|lu|lx. Let U; be the unit ball of
X;. Then

T(U) € ct®T(Uy) + ct?~1T(U3)

and consequently
bon (T(U)) £ ct?8,(T(U1)) + ct®=16,(T(U2))-
Then we have:
620(T(U)) < C'{6(T(U1))}~° (6a(T(U2)))° ()

Now T : X; — B is a A (a)-nuclear, therefore {6,(T(U;))}%» — 0. So
given ¢ > 0, we can find an N; such that {6,(T(U1))}¥/ " < € for ¥n > N,
and an N such that {6,(T'(Uz))}*/#» < ¢ for ¥n > Nz. Let N = min(Ny, N2);
then for n > N we have from (*) observed that

b2n(T(U)) < C' l1=0)ant08n,
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Let yp = (1—0)a, +08,. Since o, and B, are both stable, we have -, is also
stable. Now

(-] ©o
3" 62n(T(U))ek™ < D 620 (T)eM™ < co;
n=0

the proof is completed using the stability of (7,).

Corollary 7. Let B be a Banach space, (X1, X2) be an interpolation pair and
X be of class K(0, X1,Xz). If T: X; — B is Ao (a)-nuclear, where (a,) = o
is a stable nuclear exponent sequence and T : X — B is continuous, then
T : X — B is Ay (a)-nuclear.

Proof: Recall the inequality (*) obtained in the proof of the previous theorem

’ 62n(T(V)) € C' (8a(T{U))F° {6a(T(T2)))°

T : X, — B is continuous, therefore §,(T(U2)) £ M. T : X; — B is Ao(a)-
nuclear; therefore we can find an N such that 6,(T(U1)) < e** Vn > N or
{6.(T(U1))}*~° < el1=0)an_ Using the above equation again and the fact that
(an) = a is stable, we have

oo Lo
3 Gan(T)eForr < D Gpa(T)eF0)ean

n=0 n=0

Z 52,.(T)ek’°"‘ < oo.

n=0

IA

Study of J-Methods
Given two Banach spaces X; and X, we define

(X1, Xaloe = {f € X1+ Xz : Iun)$® € X1 N Xz such that f=)  un
n=0

in X1 + Xz and t ™ J(t*;u,) € Ao ()} where —c0 < 6 < 00, a = (an)
is a stable nuclear exponent sequence, ¢ > 1 is a fixed real number. Let

f (S [[Xl;leo,t- Then

||f||0,t.¢=! lif Zt_"oJ(t";un)e“’" for £=1,2,....

=244 n=0
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Proposition 8.
1) If either 6 < 1 or n/ay, is bounded (6 > 1), then

XinX; — IIX],,leo.g — Xi + Xo.
2) a. If either § < 0 or n/ay, is bounded (§ > 0), then

b. X3 N X; is a dense subspace of [ X1, X2]s,:.

3) If 6’ <0, then (X1, Xz]g o — [ X1, X2]o,-

4) a. If either § < 0 cr n/a, is bounded, [X;, X2]o,: — Xi.
b. If either # < 1 or n/ay, is bounded, [ X1, X2]o,: — Xa.

Proof:

1) Let f € X; N X2 and let 4, ; be the Kronecker symbol. Set u, = f - §o,n-
Then since only up # 0, f =) nro tn holds; moreover J(1;uo) = J(1; f).

(o]
[flloe,e < Dt T (8% un)e®™ = || fllx,nx,

n=0

and hence Xl nX2 — "Xl,Xgllo te

Letting f € [ X1, X2]o,¢ then 3(u,) € X1NX; such that f = Zn-O U, in
the X; + X-norm and ||f|l,c,e < oo for £=1,2,.... Since f =} s u,
in the X; + X2 norm,

)
I xi4%: < D lunllxs+x, and Juallxiexs = K(Lun).

n=0

Using Lemma 2 part ¢) we obtain K(1;u,) < min(1,¢t™")J(t";u,); t > 1

now gives
lunlix, +x, S tTHI(t75un),
ad oo
x4+, < Z tTrJ(t%5u,) < Z gn(0-1)4—n0 T(t"; un)eten.
n=0 n=0

Now if § —1<0 (6 <1), then

co
"f"Xrl-Xz < Z t—nGJ(tn;un)tan

n=0
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giving [X1, XaJoe — Xi + Xa.
Or if n/ay, is bounded and 6 > 1, then tn{0-1) < ghan,

o
[1fllx+x2 < Z 70 J (% up)eF+8%s implies [X1, Xao, — X1 + Xa.

n=0

2) a. By part 1) we always have X; N Xp — [X;, X2}o:. To show the other
inclusion, take f € [X;, X2]o,: and then f =Y~  u, and hence

o )
£l +x5 < Z lun llx,+x, = Z J(1;un).
n=0

n=0

Since ’J(t; f) increasing in t and t > 1, J(1;u,) < J(t"; u,) and

1 fllxnx, < Z J(t"; un).

n=0

Now if § < 0 we have t"? < 1 and so

o0
Ifllxinx, £ Dt 0T ("5 un)ee,

n=0

or if § > 0 and n!a,, is bounded (n £ May,), letting 8 ent =S > 0,
we have t"? = ¥ < ¢MSan apd g0

”f"X;nXQ < Z t—ne J(t";un)e(MS“)"”.
n=0
In both cases [ X1, X2]p: — X1 N Xo.
b. To show X; N X, is dense in [ X;, X2]p,, take f € [Xi, X2]o,¢; then
I(un)§® € X1 N X, such that f = 322 u, and ||fllo,,e < oo VE.

n=0

Define fy = Ef:o u, then fy € X; N X; and
o0
f—-In= Z Up.
N+1
So given €,£ INe = N3 ||f — fnlloe.e < TR 41t "I (t%5 un)eten < e

3) Consider t~™0J(t"; u,)eor = t"(o"”)t'"ol.](t";un)e“"“; but §' < 4 and
hence t*(¢ —9) < 1,
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4) a. Let f € [X1,X2]o,t then ||fllx, < Dorp [lunllx,. On the other hand,
J (", f) = max(|| fllx,, t* | fllx,) gives ||fllx, < J(¢"; f); hence

co co
“f”X; < Z J(t";un) = Z t"""t""J(t”;un)ee"”.
=0

n=0

If § <0, t"? <1 then

"f"Xx < z g—no J(t"; un)e“"".

n=0

Or if § > 0 but n/ay, is bounded, we can write t"® = ¢™ fn t. For
f/nt =8 > 0aed nfa, <M.

1Fllxs < D270 J(e™5un)elME+ D,
n=0
Hence if either § < 0 or n/a, < M, then [ X1, X2o,: — Xi.
b. We know t*||f|lx, < J(¢*; f). In particular ¢*|u,|x, < J(t%; un).
Let f € [ X1, X2]o,s then f =3 . u, and

o0 oo
Z "un"Xg < Z t_nJ(tn:un)

Ifllx, <
n=0 n=0
(o]
< Ztn(o—l)t—rw J(t";u,.)ee“".
n=0

Now if § —1 < O then t"®~%) <1, Orif §—1 > 0 and n/ay is bounded
then t"(0=1) < ¢MSan ywhere § = (§ — 1) -ént > 0 and n/a, < M.
Hence »
IFllx, < D 670 T(t"; ug)elMSFEn
n=0

gives [ X1, Xolo,e — Xo.

Theorem 9. Let (X;, X2) and (Y;,Y2) be two interpolation pairs of x
and Y respectively. The intermediate spaces [X1, X2]o,¢ and [Y1,Y2]o,
have the interpolation property.

Proof:
JETS) = max(||Tfllx,, tITfllx,) < max(My, M2)(|| fllx,, ¢l fllx,)
< max(M,, M2)J(t; f)
T(I;Tf) = "Tf"Yan: < ma'x(Mli Mz)"f”x,nx,
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therefore T is a continuous linear map form X; N X, into ¥; N Y2, From -
the proof of Theorem 5 we have K(t,Tf) < max(M;, M2)K (t; f). Letting :
t =1 we get ||Tf|ly,+v, < max(M1, M) f|lx,+x,, (i.e. T is continuous
linear map form X; + X, into Y3 + Y2). For f € [X,,X2]o,: we have

(un)EX10X23
f= Z"n

n=0

Ry

in X; + X2-norm; so we also have T'f = E?:o Tuy, in Y7 + Yo norm where
{Tun} € YiNY,. Finally J(t; Tu,) < max(My, M2)J(t; un) completes the
proof.
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